Journal of Organometallic Chemistry, 434 (1992) 159–168 Elsevier Sequoia S.A., Lausanne JOM 22650

Darstellung und Eigenschaften trifluormethylsubstituierter Stannane, $(CF_3)_n SnH_{4-n}$ (n = 1-3) *

R. Eujen, N. Jahn und U. Thurmann

Anorganische Chemie, Fachbereich 9, Universitat – GH, W-5600 Wuppertal (Deutschland)

(Eingegangen den 17. Januar 1992)

Abstract

The instable trifluoromethylstannanes $(CF_3)_n SnH_{4-n}$ (n = 1-3) have been obtained from the corresponding halides by reaction with Bu₃SnH at -40° C. Their physical properties have been determined, and their vibrational spectra have been analyzed. The ¹H, ¹⁹F, ¹³C and ¹¹⁹Sn NMR spectra have been recorded; trends in coupling constants are interpreted based on 5s(Sn) orbital contributions. For the analogous reaction with Me₃SiH, NMR evidence was obtained for the intermediate SnHX-functional species along with CF₂X and CF₂H containing stannanes.

Zusammenfassung

Die Trifluormethylstannane $(CF_3)_n SnH_{4-n}$ (n = 1-3) wurden als bei Raumtemperatur instabile Substanzen aus den entsprechenden Halogeniden durch Umsetzung mit Bu₃SnH bei – 40°C gewonnen. Ihre physikalischen Eigenschaften wurden bestimmt, und die Schwingungsspektren analysiert. Ihre ¹H, ¹⁹F, ¹³C und ¹¹⁹Sn NMR-Spektren wurden registriert; die Größe der Kopplungskonstanten wird auf der Basis von 5s(Sn)-Orbitalbeiträgen interpretiert. Bei der Reaktion mit Me₃SiH wurden mittels NMR-Spektroskopie die SnHX-funktionellen Zwischenstufen sowie Stannane mit CF₂X- und CF₂H-Gruppen identifiziert.

Einführung

Die Stabilität der Zinn-Wasserstoff-Bindung ist stark von der Natur der an das Zinn gebundenen Substituenten abhängig. Die Stammverbindung SnH_4 ist in reiner Form bei Raumtemperatur in der Gasphase längere Zeit stabil, zersetzt sich jedoch bei Anwesenheit von Katalysatoren schnell unter Bildung eines Zinnspiegels und Wasserstoff [1]. Die Einführung von elektronenreichen organischen Resten führt zu einer Stabilisierung der Sn-H-Bindung. So sind sind die Methyl-

Correspondence to: Prof. Dr. R. Eujen, FB 9, Anorganische Chemie, Bergische Universität-GH Wuppertal, Gaußstr. 20, W-5600 Wuppertal 1, Deutschland

^{*} Prof. Alois Haas zum 60. Geburtstag gewidmet.

stannane Me_nSnH_{4-n} (n = 1-3), die aus den entsprechenden Halogeniden und Hydriddonoren wie LiAlH₄ oder NaBH₄ erhalten werden, gut bekannte und charakterisierte Verbindungen [2]. Die Einführung von elektronenziehenden Substituenten führt hingegen zu einer deutlichen Destabilisierung: Die Spezies der Reihe SnH_{4-n}X_n (n = 1-3; X = Cl, Br, I) sind nur kurzfristig existenzfähig bzw. vollkommen unbekannt. Lediglich die Verbindungen mit n = 1 konnten durch NMR- [3] bzw. FTIR-Gasphasen-Spektren und Rotationsvibrationsanalyse [4] eindeutig charakterisiert werden.

Die CF₃-Gruppe besitzt Eigenschaften, die zwischen denen einer CH₃-Gruppe und eines Halogenatoms einzuordnen sind [5]. So ähnelt sie mit einem Elektronegativitätswert von 3.55 nach der Paulingskala [6] einem Chloratom; hingegen entspricht der Raumbedarf eher dem eines Bromatoms. Andererseits sind CF₃-Metall-Bindungen im wesentlichen kovalent. Dementsprechend ist die Reaktivität gegenüber Nucleophilen geringer als die einer M-X-Funktion; mit starken Nucleophilen wie OH⁻, aber auch bereits mit NH₃ [7] wird jedoch die Eliminierung der CF₃-Gruppe beobachtet.

Aufgrund dieser ambivalenten Eigenschaften ist die Frage nach der Bildungstendenz und der Stabilität trifluormethylsubstituierter Stannane $(CF_3)_n SnH_{4-n}$ (n = 1-3) von Interesse. Ziel unserer Untersuchungen war die Synthese dieser Verbindungsklasse sowie die Bestimmung der physikalischen und spektroskopischen Eigenschaften.

Ergebnisse

Während sich für die Darstellung der analogen trifluormethylsubstituierten Germane die Reduktion der entsprechenden Halogenide mit NaBH₄ in 30% iger Phosphorsäure bewährt hat [8], ist eine Synthese der analogen Stannane auf diesem Weg nicht möglich. Auch die Reaktion der Trifluormethylzinnhalogenide [9] mit LiAlH₄ in Diethyl- oder Dibutylether führt selbst bei -78 bis -30° C nicht nur zur Hydrierung der Halogenfunktion, sondern auch zum vollständigen Abbau der CF₃-Sn-Gruppe, wobei ein gelber, nicht identifizierter Feststoff gebildet wird. Die von Krause *et al.* berichtete Identifizierung des CF₃SnH₃ [10] anhand eines ¹H-NMR-Signals (Quartett bei 7.0 ppm, J(FH) 2–3 Hz) muß angesichts der eigenen Daten in Zweifel gezogen werden.

Die Synthese der Trifluormethylstannane erfordert somit einen Hydrid-Donor, der (a) CF₃-Gruppen nicht oder nur langsam eliminiert, (b) die besonders instabile Zwischenstufe mit einer SnHX-Funktion schnell durchläuft und (c) vom Produkt bei tiefen Temperaturen quantitativ abtrennbar ist. Trimethylstannan ist hierzu nicht geeignet, da bereits bei -30° C sowohl die Bildung von CF₂H-Funktionen als auch eine Methylgruppenübertragung beobachtet wird [11]. Der erstmalige, eindeutige Nachweis der Verbindungen (CF₃)_nSnH_{4-n} gelang durch Umsetzung der entsprechenden Chloride mit Me₃SiH, die bei -40° C einsetzt und neben Spuren der Stannane zu einem gelben Feststoff führt. Die stufenweise Hydrierung des (CF₃)₂SnCl₂ nach Gl. 1 konnte durch direkte NMR-spektroskopische Verfolgung der Reaktion einwandfrei nachgewiesen werden.

$$(CF_3)_2 SnCl_2 + Me_3 SiH \longrightarrow (CF_3)_2 SnHCl + Me_3 SiCl$$
 (1a)

$$(CF_3)_2$$
SnHCl + Me₃SiH \longrightarrow $(CF_3)_2$ SnH₂ + Me₃SiCl (1b)

Entsprechend wurde bei der Umsetzung des CF_3SnCl_3 ¹⁹F-NMR-spektroskopische Evidenz für die Bildung der Intermediate CF_3SnHCl_2 (²J(SnF) 565/540 Hz; ³J(FH) 9.7 Hz) und CF_3SnH_2Cl (²J(SnF) 482/461 Hz; ³J(FH) 8.9 Hz) erhalten. Zur Synthese größerer Mengen der Stannane sind Trimethyl- oder auch Tributylsilan ungeeignet, da der Zerfall der reaktiven Zwischenstufen gegenüber der Hydrierung dominiert.

Zufriedenstellende Ausbeuten erhält man dagegen durch Umsetzung der Halogenide mit stöchiometrischen Mengen des schwerflüchtigen Tributylstannans bei -50 bis -40° C:

$$(CF_3)_n SnX_{4-n} + (4-n)Bu_3SnH \longrightarrow (CF_3)_n SnH_{4-n} + (4-n)Bu_3SnX$$
(2)

Alkylgruppenübertragung und Bildung von CF_2H -Funktionen spielen bei diesen Temperaturen keine bzw. eine untergeordnete Rolle; die halogenierten Zwischenstufen sind nicht mehr nachweisbar. Obwohl CF_3SnH_3 das thermisch stabilste Stannan dieser Reihe ist, ist die Ausbeute aufgrund zweier zu durchlaufenden SnHX-Zwischenstufen am geringsten. In diesem Falle werden auch CF_2X -Derivate wie $(CF_3)(CF_2CI)SnCl_2$ und hiervon abgeleitete Hydrierungsprodukte sowie erhebliche Mengen an leichtflüchtigen Nebenprodukten gebildet, die zu *ca.* 30% aus CF_3H und 70% aus CF_2HX bestehen, wobei letzteres als Folgeprodukt einer Difluorcarben- und HX-Eliminierung aufzufassen ist. Das ebenfalls in geringen Mengen anfallende $(CF_3)(CF_2H)SnH_2$ ist als Produkt einer CF_2 -Einschiebung in die Sn-H-Bindung des CF_3SnH_3 zu erklären.

Physikalische Eigenschaften

Die Trifluormethylstannane $(CF_3)_n SnH_{4-n}$ sind leichtflüchtige, farblose Flüssigkeiten, die in reiner Form bei tiefen Temperaturen (-30°C) unbegrenzt haltbar sind, sich jedoch bei Raumtemperatur rasch unter Bildung eines orangegelben Feststoffes zersetzen. Die Schmelzpunkte, extrapolierten Siedepunkte und Dampfdruckparameter sind in Tabelle 1 zusammengefaßt. In Form verdünnter Lösungen, z.B. 20% ig in n-Pentan, können die Verbindungen längere Zeit bei Raumtemperatur aufbewahrt werden, ohne daß Zersetzung eintritt. Hierbei erweist sich vor allem das CF_3SnH_3 als erstaunlich stabil: So wird nach 4 h bei 80–90°C lediglich 25% ige und erst nach 15 h vollständige Zersetzung beobachtet. Ungeklärt ist bislang der Zersetzungsmechanismus, da abgesehen von geringen Spuren CF_3H und CF_2H_2 keine F- bzw. H-haltigen Zersetzungsprodukte identifiziert werden konnten.

,				5° no	4-n	,	
	MW (g/mol)	Schmp. (°C)	Sdp. ^{<i>a</i>} (°C)	A ^b	B ^b	∆H _V ^c (kJ/mol)	ΔS_V^d (J/mol K)
(CF ₃) ₃ SnH	326.7	-63	78	3546	17.0	29.5	83.9
$(CF_3)_2 SnH_2$	258.7	- 73	54	3464	17.5	28.8	88.0
CF ₃ SnH ₃	190.7	-65	24	3354	18.2	27.9	94.0

Tabelle 1 Physikalische Daten der Trifluormethvistannane. (CF₁)_SnH₁, (n = 1-3)

^{*a*} Durch Extrapolation aus der Dampfdruckkurve ermittelt. ^{*b*} ln *p* (mbar) = -A/T + B. ^{*c*} $\Delta H_V = R \cdot A$. ^{*d*} $\Delta S_V = \Delta H_V / T_{Sdp}$

Fig. 1. $^{19}\text{F}\text{-rauschentkoppeltes}$ (links) und $^{19}\text{F}/\,^1\text{H}\text{-gekoppeltes}$ (rechts) $^{13}\text{C}\text{-NMR}\text{-Spektrum}$ des (CF₃)₃SnH.

Kernresonanzspektren

Die Kernresonanzspektren der CF₃-substituierten Stannane (Fig. 1 und 2) sind gekennzeichnet (a) durch das Auftreten charakteristischer Satellitenspektren, die durch Kopplungen zu den Spin-1/2-Isotopen ¹¹⁹Sn, ¹¹⁷Sn bzw. ¹¹⁵Sn mit natürlichen Häufigkeiten von 8.56, 7.61 bzw. 0.35% entstehen und (b) durch die Vielzahl NMR-aktiver Isotop, die Anlaß zu einfach interpretierbaren, aussagekräftigen Multiplett-Signalstrukturen geben. Wie aus Tabelle 2 zu entnehmen ist, spricht die CF₃-Gruppe und damit die ¹⁹F- und ¹³C-Resonanz nur wenig, die ¹H- und ¹¹⁹Sn-Resonanzen sowie die Kopplungen zum Zinnkern dagegen äußerst empfindlich auf elektronische Änderungen am Zinnatom an.

Die ¹⁹F-Resonanzen liegen in einem engen Bereich um ca. -40 ppm und sind gegenüber den korrespondierenden Halogeniden [9] deutlich tieffeldverschoben.

Fig. 2 ¹⁹F- (links) und ¹¹⁹Sn-NMR-Spektrum (rechts) des CF₃SnH₃

	δ(¹⁹ F)	8(¹ H)	δ(¹³ C)	δ(¹¹⁹ Sn)	$^{2}J(SnF)^{b}$	$_{q}$ (HuS) f_{1}	1 J(SnC) b	¹ <i>J</i> (CF)	³ J(CF)	² J(CH)	3J(FH)
(CF ₃) ₃ SnH ^c	- 40.4	8.33	132.9	- 309.8	478/457	2798/2674	912/871	350.2	5.1	24.2	8.0
4 6 6	-40.5	7.37	¥	k	495/472	2633/2513	¥.	¥	¥	¥	7.5
(CF ₁),SnH ₂ ^c	- 40.5	7.50	133 0	- 303.1	406/388	2536/2423	777/742	350 3	5.0	18.7	7.5
d	- 40.8	6.73	¥	k	438/419	2430/2325	r Y	¥	¥	¥	7.4
CF ₃ SnH ₃ ^c	- 38.5	5 99	137.5	-351.6	347/331	2207/2109	653/625	351.4	I	134	7.4
d , '	-40.3	5.47	k	k	381/364	2183/2085	¥	¥	¥	k	7.3
(CF ₁), SnHCl	- 43.3	8.16	k	k	561/536	3346/3194	ķ	k	k	k	101
(CF,)(CF,CI)SnH, ^f	- 40.0	7.50	k	- 281.1	404/386	2527/2415	×	×	k	¥	7.0
(CF ₁)(CF ₂ H)SnH ₂ ^B	- 38.9	¥	*	k	352/337	, x	k	¥	¥	k	7.2 8
SnH ₄ ^h	ı	3.85	ţ	-493.0	1	1933/1848	ı	I	I	ı	I
SnHCl ₃ '	I	6 93	ı	I	1	2448/2338	I	I	I	J	I
^a Chemische Verschieb	udd ur gun	n; Kopplun	gskonstante	n in Hz ^{b n} J	$(SnX) = ^{n}J(^{119})$	SnX)/"J(¹¹⁷ SnX). ^c Reinsubst	tanz bei –	30°C, ¹⁹ F ge	gen ext. CFC	I ₃ , ¹ H gegen
ext TMS, ¹³ C gegen ex Sextett $(^{3}J(HSnCF_{3}) \cong$	d. TMS, ¹¹⁵ ³ J(HSnCF	'Sn gegen e ? ₂); ² J(SnC	xt. SnMe ₄ 'F ₂) 347/33	" ca. 20%-1ge 12, ⁴ J(FF) 2.5	e Lösung in n- Hz ⁸ Neben	Pentan 'Als Ne iprodukt in CF ₃ S	benprodukt 11 SnH ₃ ; $\delta(CF_2)$	n (CF ₃) ₂ Snl - 117 9 pj	H ₂ . ⁷ Neber bm, ² J(SnCl	produkt in C $\frac{7}{2}$) 356/340,	г ₃ SnH ₃ , 'Н: ² J(НF) 44.5,
³ J(HSnCF ₂) 8.9, ⁴ J(FF) 3 2 Hz. ^h	Lıt. 12. ' I	Jt. 3. * Nic	ht beobachtet							

a
e
a
2
a
st
2
- 12
ĕ
E
2
Ē
ŢΞ
F
- 13
Ð
E
ц,
ä
-
2
Σ
ァ

Tabelle 2

Fig. 3. Korrelation zwischen ${}^{2}J(SnF)$ und ${}^{1}J(SnH)$ (-O Reinsubstanz; -• Lösung in n-Pentan) bzw ${}^{2}J(SnF)$ und ${}^{1}J(SnC)$ (-- \blacktriangle --).

Im Gegensatz zu den Halogeniden sind die δ -Werte gegenüber dem CF₃-Substitutionsgrad invariant. Die ¹H-Resonanzen sind in Übereinstimmung mit der, aufgrund der hohen CF₃-Gruppenelektronegativität erwarteten, stärkeren Entschirmung der Protonen gegenüber den Methylanaloga [12] deutlich tieffeldverschoben; entsprechend steigt mit zunehmender CF₃-Substitution die ¹H-Resonanzfrequenz an.

Wie bereits für die Verbindungsklasse der Halogen(trifluormethyl)stannane und die Reihe der Methyl(trifluormethyl)stannane gezeigt wurde [9], ist die Größe der eng miteinander korrelierten ${}^{1}J(SnC)$ - und ${}^{2}J(SnF)$ -Kopplungen in erster Linie durch den Fermi-Kontakt-Term und somit letztlich durch den Anteil des 5s-Orbitals in der CF₃-Sn-Bindung bestimmt. Die ¹J(SnH)-Kopplungen der CF₃-substituierten Stannane liegen im Bereich von 2200 bis 2800 Hz und sind damit deutlich größer als die Werte der analogen Methylstannane (1740 bis 1850 Hz) [12]. Während die Kopplung in der Reihe Me_nSnH_{4-n} mit *n* geringfügig abnimmt, was auf einen sinkenden s-Anteil in der SnH-Bindung hinweist, ist der Trend in der Reihe $(CF_3)_n SnH_{4-n}$ umgekehrt. Die relativ zur Sn-CH₃- und auch Sn-H-Bindung geringere Kovalenz der Sn-CF₃-Bindung macht sich in einer verringerten Beanspruchung des 5s(Sn)-Orbitals bemerkbar, so daß mit zunehmender CF₃-Substitution der für die SnH-Bindung verfügbare s-Charackter ansteigt (Fig. 3). Die Einführung eines vorwiegend 5p-gebundenen Halogenatoms resultiert dementsprechend in einer starken Erhöhung sowohl der ${}^{1}J(SnH)$ - als auch der ${}^{2}J(SnF)$ -Kopplung. Die ${}^{1}J(SnC)$ -Kopplung korreliert mit der ${}^{2}J(SnF)$ -Kopplung (Fig. 3), wobei die Datenpunkte sich gut in die an den Halogeniden gewonnene Korrelation [9] einfügen.

Die Kopplungen, aber auch die chemischen Verschiebungen sind lösungsmittelabhängig. Während gegenüber der Reinsubstanz die ${}^{2}J(SnF)$ -Kopplung in n-Pentan-Lösung ansteigt, nimmt die ${}^{1}J(SnH)$ -Kopplung ab, so daß letzlich zwei Korrelationen (Fig. 3) resultieren. Während in n-Pentan von weitgehend isolierten Molekülen ausgegangen werden kann, machen sich in Reinsubstanz Wechselwirkungen bemerkbar, die mit der Lewis-Acidität des Zinns und damit mit dem CF₃-Substitutionsgrad ansteigen. Die gleichzeitige Erhöhung der ν (SnH)-Frequenz beim Übergang von der Gas- zur flüssigen Phase zeigt, daß die Assoziation nicht über die Sn-H-Funktion sondern über C-F \cdots Sn-Kontakte erfolgt, die auch ein Absinken insbesondere der ν_{as} (CF₃)-Schwingung bewirken.

Schwingungsspektren

Die SnH-funktionellen Trifluormethylstannane sind in der Gasphase bei Raumtemperatur ausreichend stabil, so daß die Aufnahme von IR-Spektren problemlos möglich ist. Dagegen erfolgte die Registrierung der Ramanspektren in flüssiger Phase bei -30° C bzw. in fester Phase bei -130° C.

Die Zuordnung der in Tabelle 3 aufgelisteten Schwingungen kann sich einerseits auf die durch Normalkoordinatenanalyse gesicherten Zuordnungen der Stannane (CF₃)₄Sn [13] und CF₃SnMe₃ [14], andererseits die der Germane (CF₃)_nGeH_{4-n} [15] stützen. Bei der Analyse der Schwingungsspektren kann von der höchst möglichen Symmetrie des Moleküls, C_{3v} für (CF₃)₃SnH und CF₃SnH₃ bzw. C_{2v} für (CF₃)₂SnH₂ ausgegangen werden. Eine Verdrillung der CF₃-Gruppen führt zu einer Symmetrieerniedrigung, die sich jedoch, falls vorhanden, nicht bemerkbar macht. Eine Schwingungskopplung zwischen den CF₃-Gruppen ist aufgrund der hohen Masse des Zentralatoms Zinn nahezu vernachlässigbar, so daß für eine CF₃-Sn-Einheit lokale C_{3v} -Symmetrie zugrunde gelegt werden kann:

a ₁	a ₂	e	Erwartungsbereich (cm ⁻¹)
$\overline{\nu_{s}(CF_{3})}$	_	$\nu_{as}(CF_3)$	1000-1200
$\delta_{s}(CF_{3})$	-	$\delta_{as}(CF_3)$	700-720/520
$\nu_s(SnC)$	-	$\rho(CF_3)$	200-300

Für das $(CF_3)_3$ Sn-Fragment (C_{3v}) transformieren die lokalen Schwingungsmoden der drei CF_3 -Sn-Einheiten nach $3 \times a_1 \rightarrow a_1 + e$ bzw. $3 \times e \rightarrow a_1 + a_2 + e$; entsprechend gilt für $(CF_3)_2$ SnH₂ $2 \times a_1 \rightarrow a_1 + b_2$ sowie $2 \times e \rightarrow a_1 + a_2 + b_1 + b_2$, wobei für die einzelnen Komponenten einer Schwingungsform aufgrund der hohen Masse des Zinnatoms nur im Fall einer Schwingungskopplung mit SnH-Deformationen eine signifikante energetische Aufspaltung zu erwarten ist.

Die im IR- und Raman-Spektrum als starke Banden auftretenden ν (SnH)-Schwingungen liegen bei deutlich höheren Frequenzen als die der Methylanaloga [16]. Für das (CF₃)₃SnH wird die höchste bisher bekannte SnH-Schwingungsfrequenz registriert, welche zudem eine starke Phasenabhängigkeit (s.o.) aufweist. Der geringer werdenden Lewis-Acidität des Zinns und damit der geringer werdenden Tendenz zur Eigenassoziation entsprechend ist der Phasenshift beim (CF₃)₂SnH₂ und insbesondere dem CF₃SnH₃ weniger ausgeprägt.

Die CSnH-Deformationsschwingungen liegen im Bereich von 380-600 cm⁻¹. Zwischen den symmetriegleichen Komponenten der $\delta_{as}(CF_3)$ - und $\delta(CSnH)$ -Moden kommt es zu einer ausgeprägten Schwingungskopplung, die sich durch Abstoßung und Intensitätsausgleich bemerkbar macht: So erfährt die im ungestörten Zustand bei 525 cm⁻¹ erwartete e-Komponente der $\delta_{as}(CF_3)$ durch Wechselwirkung mit der bei 553 cm⁻¹ erscheinenden $\delta(CSnH)$ -Schwingung eine Rotverschiebung von 30 cm⁻¹, wobei die Intensität stark zunimmt. Ähnliches gilt für die a_2 - und b_2 -Komponenten des $(CF_3)_2SnH_2$, während die $b_1(CSnH)$ -Defor-

Tabelle 3	
-----------	--

Schwingungsspektren der Trifluormethylstannane (CF₃)_nSnH_{4-n} (n = 1-3)^{*a*}

(CF ₃) ₃ SnH	ł		(CF ₃) ₂ Snl	H ₂	CF ₃ SnH ₂	3	Zuordnung
IR	Raman		IR	Raman	IR	Raman	
(Gas)	(flussig, - 30°C)	(fest, - 130°C)	(Gas)	(flussıg)	(Gas)	(flússig)	
3822vw			3822vw		3800vw		$2\nu(SnH)$
2304vw			2292vw 2274vw		2292vw		
2244vw					2240vw		
2230vw			2232vw				
2204vw			2184vw		2170vw		
			1948s	1970w,sh	1928s	1939w,sh	$\nu_{as}(SnH)$
1946s	1970m,p	1990m	1934s	1948s,p	1923s,sh	1922s,p	$\nu_s(SnH)$
1238w							
1173vs	1175w,p	1178w	1161s	1163w,p	1152vs	1 148m,p	$\nu_s(CF_3)$
1155vs,sh							$\nu_{s}(CF_{3})$
1136vvs	1127w	1133w	1134vs	1137w			$\nu_{as}(CF_3)$
1115vs		1096vw,b	1124vs 1096s	1110vw,b	1096vs	1070vw,b	$\nu_{as}(CF_3) \\ \nu_{as}(CF_3)$
1065w							
721m	722s,p	721s	719w-m	716s,p	715m 669s	711s,p 665w,sh	$\delta_{s}(CF_{3})$ $\delta_{as}(SnH_{3})$
			680s	678m,p	662s	658w	$\delta(SnH_2)/\delta_s(SnH_3)$
553s	552m	553m,b	586s	590w			$\delta(CSnH)^{b}$
				547w			δ (CSnH) ^b
532w,sh	524vw	523vw,sh	525sh	525vw,sh	522w,b	529w	$\delta_{as}(CF_3)$
			507w				$\delta_{as}(CF_3)^{b}$
491s	496w	498w	482vw	478w			$\delta_{as}(CF_3)^{b}$
					443m,b	451m	$\rho(SnH_3)$
			380m	395vw,b			$\delta(CSnH)(b_1)$
275s	274m	274m	265s	265sh			$\nu_{as}(SnC_n)$
262m,sh	260s,p	260s	255m,sh	257s,p	258m	252w	$\rho(CF_3)^{b}$
						250s,p	$\nu(SnC)$
	226w,sh						$\rho(CF_3)$
	221vs,p	224vs	220vw	224s,p			$\nu_s(\operatorname{SnC}_n)^{p}$
	63m	68b		61w			$\delta(SnC_n)$

^a In cm⁻¹, s = stark, m = mittel, w = schwach, v = sehr, sh = Schulter, b = breit, p = polarisiert b Siehe Text.

mation bei 380 cm⁻¹ deutlich tiefer liegt und keine signifikante Wechselwirkung mehr zeigt:

(CF₃)₃SnH 553 cm⁻¹ ↔ 491 cm⁻¹ (e) (CF₃)₂SnH₂ 586 cm⁻¹ ↔ 507 cm⁻¹ (b₂) 547 cm⁻¹ ↔ 478 cm⁻¹ (a₂)

Von den $\rho(CF_3)$ -Schwingungen im Bereich 220–260 cm⁻¹ ist die a₁-Komponente jeweils stark mit der $\nu_s(SnC)$ gekoppelt, so daß für $(CF_3)_3SnH$ und $(CF_3)_2SnH_2$ zwei starke polarisierte Ramanlinien auftreten und eine eindeutige Beschreibung als $\rho(CF_3)$ - bzw. $\nu(SnC)$ -Schwingung nicht mehr möglich ist.

Experimentelles

Die Verbindungen wurden in einer mit fettfreien Hähnen ausgerüsteten Vakuumapparatur gehandhabt. Dampfdrucke wurden mit einem MKS Baratron 315 BHS Manometer gemessen. Spektroskopische Messungen erfolgten mit folgenden Geräten: IR: Perkin–Elmer 580 B als Gas in 10 cm Gaszellen (400 bis 4000 cm⁻¹ KBr-, 180 bis 400 cm⁻¹ Polyethylenfenster); Raman: Cary 82 mit Kr⁺ (647.1 nm)-Anregung im Bereich von 40 bis 4000 cm⁻¹ in 4 mm Glasampullen als Flüssigkeit (-30° C) oder Feststoff (-130° C); NMR: Bruker AC 250 (¹H: 250.13 MHz, ext. TMS; ¹⁹F: 235.36 MHz, ext. CFCl₃; ¹³C: 62.90 MHz, ext. TMS); ¹¹⁹Sn: 93.28 MHz, ext. SnMe₄); Massenspektren: MAT 311 (EI, 70 eV).

Tris(trifluormethyl)stannan, $(CF_3)_3$ SnH

2.0 mmol (CF₃)₃SnX (X = Br, I) [9] werden in einem direkt mit der Vakuumapparatur verbundenen Schlenkkolben auf 0.61 g (2.1 mmol) Bu₃SnH kondensiert. Nach 2 h Rühren bei -50 bis -40°C werden die flüchtigen Reaktionsprodukte ohne Aufwärmen in eine auf -126°C gekühlte Falle abkondensiert, wobei 0.52 g (80%) (CF₃)₃SnH als leichtflüchtige, bei Raumtemperatur instabile Flüssigkeit erhalten werden.

 $(CF_3)_3SnH: MS \ (m_{Sn} = 120): \ m/e \ 327 \ [(CF_3)_3Sn^+] < 1; \ 277 \ [(CF_3)_2SnF^+] < 1; \ 190 \ [CF_3SnH^+] \ 3; \ 189 \ [CF_3Sn^+] \ 4; \ 159 \ [SnF_2H^+] < 1; \ 140 \ [SnFH^+] \ 1; \ 139 \ [SnF^+] \ 8; \ 121 \ [SnH^+] \ 2; \ 120 \ [Sn^+] \ 4; \ 100 \ [C_2F_4^+] \ 43; \ 81 \ [C_2F_3^+] \ 89; \ 69 \ [CF_3^+] \ 9; \ 51 \ [CF_2H^+] \ 3; \ 50 \ [CF_2^+] \ 100\%.$

Bis(trifluormethyl)stannan, $(CF_3)_2SnH_2$

Die Darstellung erfolgt analog durch Umsetzung von 8.4 mmol $(CF_3)_2 SnX_2$ (X = Br, I) [9] mit 5.4 g (18.5 mmol) Bu₃SnH, wobei 2.0 g (92%) $(CF_3)_2 SnH_2$ als leichtflüchtige, bei Raumtemperatur instabile Flüssigkeit in einer auf $-126^{\circ}C$ gekühlten Falle aufgefangen werden.

 $(CF_3)_2SnH_2$: MS $(m_{Sn} = 120)$: m/e 209 $[CF_3SnFH^+]$ 1; 208 $[CF_3SnF^+]$ 1; 191 $[CF_3SnH_2^+]$ 49; 190 $[CF_3SnH^+]$ 22; 189 $[CF_3Sn^+]$ 51; 171 $[SnCF_2H^+]$ 1; 170 $[SnCF_2^+]$ 2; 159 $[SnF_2H^+]$ 4; 158 $[SnF_2^+]$ 3; 141 $[SnFH_2^+]$ 37; 140 $[SnFH^+]$ 12; 139 $[SnF^+]$ 98; 121 $[SnH^+]$ 67; 120 $[Sn^+]$ 99; 69 $[CF_3^+]$ 45; 51 $[CF_2H^+]$ 20; 50 $[CF_2^+]$ 100%.

Trifluormethylstannan, CF₃SnH₃

5.7 mmol CF₃SnX₃ (X = Cl, Br, I) [9] werden auf 5.5 g (18.8 mmol) Bu₃SnH kondensiert und 2 h bei -50 bis -40° C gerührt. Nach dem Abkondensieren ohne Aufwärmen werden in einer auf -126° C gekühlten Falle 0.49 g (45%) CF₃SnH₃ als eine leichtflüchtige bei Raumtemperatur instabile Flüssigkeit zusammen mit kleinen Mengen an (CF₃)(CF₂Cl)SnH₂ und (CF₃)(CF₂H)SnH₂ erhalten. Zusätzlich werden in einer auf -196° C gekühlten Falle 0.25 g eines Gemisches aufgefangen, das im wesentlichen aus CF₃H (30%) und CF₂HX (70%) besteht.

 $\begin{array}{l} {\rm CF_3SnH_3:} \ {\rm MS} \ (m_{\rm Sn}=120): \ m/e \ 191 \ [{\rm CF_3SnH_2^+}] \ 13; \ 190 \ [{\rm CF_3SnH^+}] \ 8; \ 189 \\ {\rm [CF_3Sn^+] \ 10; \ 171 \ [{\rm SnCF_2H^+}] \ 1; \ 170 \ [{\rm SnCF_2^+}] \ 1; \ 158 \ [{\rm SnF_2^+}] \ 3; \ 141 \ [{\rm SnFH_2^+}] \ 9; \\ {\rm 140 \ [{\rm SnFH^+}] \ 3; \ 139 \ [{\rm SnF^+}] \ 28; \ 123 \ [{\rm SnH_3^+}] \ 66; \ 122 \ [{\rm SnH_2^+}] \ 36; \ 121 \ [{\rm SnH^+}] \ 100; \\ {\rm 120 \ [{\rm Sn^+}] \ 93; \ 69 \ [{\rm CF_3^+}] \ 13; \ 51 \ [{\rm CF_2H^+}] \ 86; \ 50 \ [{\rm CF_2^+}] \ 20\%. \end{array}$

Dank

Dem Land Nordrhein-Westfalen (Arbeitsgruppe Fluorchemie NRW), der Deutschen Forschungsgemeinschaft sowie dem Fonds der Chemischen Industrie danken wir für die finanzielle Unterstützung.

Literatur

- 1 E. Wiberg und E. Amberger, Hydrides, Elsevier, Amsterdam, 1971, S. 719 ff.
- 2 R.H. Fish, H.G. Kuivila und I.J Tyminski, J. Am. Chem. Soc., 89 (1967) 5861; A.E. Finholt, A.C. Bonds, K.E. Wilzbach und H.I. Schlesinger, ibid., 69 (1947) 692; E.R. Birnbaum und P.H. Javora, Inorg. Synth, 12 (1970) 45.
- 3 J M Bellama, R.A. Gsell, Inorg. Nucl. Chem. Lett., 7 (1971) 365
- 4 H. Burger, C.M. Betzel und P. Schulz, J. Mol. Spectrosc., 121 (1987) 218.
- 5 H. Oberhammer, J Fluorine Chem., 23 (1983) 147
- 6 J.E. Huheey, J. Phys. Chem, 69 (1965) 3284
- 7 R. Eujen und F.E. Laufs, J. Organomet. Chem., 415 (1991) 47.
- 8 R. Eujen, R. Mellies und E. Petrauskas, J. Organomet. Chem., 299 (1986) 29.
- 9 R. Eujen und U. Thurmann, J. Organomet. Chem., 433 (1992) 63.
- 10 L.J Krause und J.A. Morrison, Inorg Chem., 19 (1980) 604.
- 11 R. Eujen, N Jahn und U. Thurmann, J. Fluorine Chem., zur Veröffentlichung eingereicht.
- 12 T Birchall und V. Manivannen, J. Chem. Soc., Dalton Trans., (1985) 2671.
- 13 R. Eujen, H. Bürger und H. Oberhammer, J. Mol. Struct., 71 (1981) 109.
- 14 R. Eujen und H. Bürger, Spectrochim. Acta, Part A, 35 (1979) 1135.
- 15 R. Eujen und H. Burger, Spectrochim. Acta, Part A, 37 (1981) 1029; R. Eujen und R. Mellies, ibid., 38 (1982) 533
- 16 I. Omae, J. Organomet Chem. Library 21, Organotin Chemistry, Elsevier, Amsterdam, 1989, S. 65.